Context
To address the overwhelming negative environmental issues of plastic packaging1 and to enter a circular economy, it is urgent and crucial to lessen the negative burden of packaging resources (renewable without competition for food resources vs. oil-based) and of packaging waste (fully biodegradable* vs. accumulated):
*Fully biodegradable in natural conditions or home composting conditions in opposition to industrially compostable materials
Furthermore, despite extremely dynamic R&D on biobased & biodegradable materials (>1,4k scientific publications/year on the last 10 years), commercially available bio-packaging does not yet properly meet the huge market and society demands 4, 5 . Currently marketed bio-polymers are either made from food resources (e.g. PLA, PBS, starch-based blends or PHB), or not fully biodegradable in natural conditions(case of PLA) or not water resistant (case of starch-based blends)4. Among them, PHAs (PolyHydroxyAlkanoates) are the more promising due to their inherent full biodegradability5 and to their great diversity (more than 150 monomers)6 from which we can obtain tailored polymers that cover a wide range of applications5,10,14,15.
PHAs are fully synthesized by a great diversity of microorganisms as intracellular inclusions.
PHAs are a family of natural polyesters (linear polymers) composed of 3-hydroxy fatty acid monomers.
LOOP4PACK
Sustainable bioplastics from agro-industrial residues to close the packaging loop: (projet ANR-19-CE43-0006)
The project has been granted for 482,8 k€ by the ANR (total cost 761.6 k€), for a duration of 3 and a half years.
References
1 – European Commission’s Directorate-General for Research and Innovation. A Circular Economy for Plastics, Insights from Research and Innovation to Inform Policy and Funding Decisions.; 2019. doi:10.2777/269031
2 – Ellen MacArthur Foundation. The New Plastics Economy: Rethinking the Future of Plastics.; 2016. doi:10.1103/Physrevb.74.035409
3 – Combination of data from European Bioplastics and Plastics Europe for the year 2017
4 – Guillard, Gaucel, Fornaciari, et al. Front Nutr. 2018;5:121. doi:10.3389/FNUT.2018.00121
5 – Koller. Appl Food Biotechnol. 2014;1(1):3-15. doi:10.22037/AFB.V1I1.7127
6 – Li, Yang, & Loh. NPG Asia Mater. 2016;8(4):e265-e265. doi:10.1038/am.2016.48
7 – Kourmentza, Plácido, Venetsaneas, et al. Bioengineering. 2017;4(2):55. doi:10.3390/bioengineering4020055
8 – Kosseva, & Rusbandi. Int J Biol Macromol. 2018;107:762-778. doi:10.1016/J.IJBIOMAC.2017.09.054
9 – Castilho, Mitchell, & Freire. Bioresour Technol. 2009;100(23):5996-6009. doi:10.1016/J.BIORTECH.2009.03.088
10 – Koller, Atlié, Dias, et al. In: Chen, ed. Plastics from Bacteria : Natural Functions and Applications. Vol 14. Microbiology Monographs; 2010:85-119. doi:10.1007/978-3-642-03287-5_5
11 – Fernández-Dacosta, Posada, Kleerebezem, et al. Bioresour Technol. 2015;185:368-377. doi:10.1016/J.BIORTECH.2015.03.025
12 – Harding, Dennis, von Blottnitz, et al. J Biotechnol. 2007;130(1):57-66. doi:10.1016/J.JBIOTEC.2007.02.012
13 – Koller, Niebelschütz, & Braunegg. Eng Life Sci. 2013;13(6):549-562. doi:10.1002/elsc.201300021
14 – Nielsen, Rahman, Rehman, et al. Microb Biotechnol. 2017;0. doi:10.1111/1751-7915.12776
15 – Tan, Chen, Li, et al. Polymers (Basel). 2014;6(3):706-754. doi:10.3390/polym6030706
16 Pagliano, Ventorino, Panico, et al. Biotechnol Biofuels. 2017;10(1):113. doi:10.1186/s13068-017-0802-4
17 Fernández-Dacosta, Posada, Kleerebezem, et al. Bioresour Technol. 2015;185:368-377. doi:10.1016/J.BIORTECH.2015.03.025
18 Berthet, Angellier-Coussy, Chea, et al. Compos Part A Appl Sci Manuf. 2015. doi:http://dx.doi.org/10.1016/j.compositesa.2015.02.006
19 Berthet, Angellier-Coussy, Guillard, et al. J Appl Polym Sci. 2016;133(2):n/a-n/a. doi:10.1002/app.42528